24 research outputs found

    Fat oxidation at rest and during exercise in male monozygotic twins

    Get PDF
    Purpose We aimed to investigate if hereditary factors, leisure-time physical activity (LTPA) and metabolic health interact with resting fat oxidation (RFO) and peak fat oxidation (PFO) during ergometer cycling. Methods We recruited 23 male monozygotic twin pairs (aged 32-37 years) and determined their RFO and PFO with indirect calorimetry for 21 and 19 twin pairs and for 43 and 41 twin individuals, respectively. Using physical activity interviews and the Baecke questionnaire, we identified 10 twin pairs as LTPA discordant for the past 3 years. Of the twin pairs, 8 pairs participated in both RFO and PFO measurements, and 2 pairs participated in either of the measurements. We quantified the participants' metabolic health with a 2-h oral glucose tolerance test. Results Fat oxidation within co-twins was correlated at rest [intraclass correlation coefficient (ICC) = 0.54, 95% confidence interval (CI) 0.15-0.78] and during exercise (ICC = 0.67, 95% CI 0.33-0.86). The LTPA-discordant pairs had no pairwise differences in RFO or PFO. In the twin individual-based analysis, PFO was positively correlated with the past 12-month LTPA (r = 0.26, p = 0.034) and the Baecke score (r = 0.40, p = 0.022) and negatively correlated with the area under the curve of insulin (r = - 0.42, p = 0.015) and glucose (r = - 0.31, p = 0.050) during the oral glucose tolerance test. Conclusions Hereditary factors were more important than LTPA for determining fat oxidation at rest and during exercise. Additionally, PFO, but not RFO, was associated with better metabolic health.Peer reviewe

    Role of Menopausal Transition and Physical Activity in Loss of Lean and Muscle Mass: A Follow-Up Study in Middle-Aged Finnish Women

    Get PDF
    In midlife, women experience hormonal changes due to menopausal transition. A decrease especially in estradiol has been hypothesized to cause loss of muscle mass. This study investigated the effect of menopausal transition on changes in lean and muscle mass, from the total body to the muscle fiber level, among 47–55-year-old women. Data were used from the Estrogenic Regulation of Muscle Apoptosis (ERMA) study, where 234 women were followed from perimenopause to early postmenopause. Hormone levels (estradiol and follicle stimulating hormone), total and regional body composition (dual-energy X-ray absorptiometry (DXA) and computed tomography (CT) scans), physical activity level (self-reported and accelerometer-measured) and muscle fiber properties (muscle biopsy) were assessed at baseline and at early postmenopause. Significant decreases were seen in lean body mass (LBM), lean body mass index (LBMI), appendicular lean mass (ALM), appendicular lean mass index (ALMI), leg lean mass and thigh muscle cross-sectional area (CSA). Menopausal status was a significant predictor for all tested muscle mass variables, while physical activity was an additional significant contributor for LBM, ALM, ALMI, leg lean mass and relative muscle CSA. Menopausal transition was associated with loss of muscle mass at multiple anatomical levels, while physical activity was beneficial for the maintenance of skeletal muscle mass

    Total and regional body adiposity increases during menopause—evidence from a follow‐up study

    Get PDF
    For women, menopausal transition is a time of significant hormonal changes, which may contribute to altered body composition and regional adipose tissue accumula-tion. Excess adiposity, and especially adipose tissue accumulation in the central body region, increases women's risk of cardiovascular and metabolic conditions and affects physical functioning. We investigated the associations between menopausal progres-sion and total and regional body adiposity measured with dual- energy X- ray absorpti-ometry and computed tomography in two longitudinal cohort studies of women aged 47– 55 (n= 230 and 148, mean follow- up times 1.3 ± 0.7 and 3.9 ± 0.2 years, mean baseline BMI 25.5 kg/m2). We also examined associations between menopausal pro -gression and skeletal muscle fiber characteristics, as well as adipose tissue- derived adipokines. Relative increases of 2%– 14% were observed in regional and total body adiposity measures, with a pronounced fat mass increase in the android area (4% and 14% during short- and long- term follow- ups). Muscle fiber oxidative and glycolytic capacities and intracellular adiposity were not affected by menopause, but were dif-ferentially correlated with total and regional body adiposity at different menopausal stages. Menopausal progression and regional adipose tissue masses were positively associated with serum adiponectin and leptin, and negatively associated with resistin levels. Higher diet quality and physical activity level were also inversely associated with several body adiposity measures. Therefore, healthy lifestyle habits before and during menopause might delay the onset of severe metabolic conditions in women

    Methylation status of VTRNA2-1/nc886 is stable across populations, monozygotic twin pairs and in majority of tissues

    Get PDF
    Aims & methods: The aim of this study was to characterize the methylation level of a polymorphically imprinted gene, VTRNA2-1/nc886, in human populations and somatic tissues.48 datasets, consisting of more than 30 tissues and >30,000 individuals, were used. Results: nc886 methylation status is associated with twin status and ethnic background, but the variation between populations is limited. Monozygotic twin pairs present concordant methylation, whereas similar to 30% of dizygotic twin pairs present discordant methylation in the nc886 locus. The methylation levels of nc886 are uniform across somatic tissues, except in cerebellum and skeletal muscle. Conclusion: The nc886 imprint may be established in the oocyte, and, after implantation, the methylation status is stable, excluding a few specific tissues. Tweetable abstract Methylation status of a polymorphically imprinted gene, VTRNA2-1/nc886, is stable in human populations (48 cohorts, n > 30,000) and in somatic tissues, except in cerebellum and skeletal muscle. Twin data suggest it may already be established in the oocyte.Peer reviewe

    Circulating metabolome landscape in Lynch syndrome

    No full text
    Circulating metabolites systemically reflect cellular processes and can modulate the tissue microenvironment in complex ways, potentially impacting cancer initiation processes. Genetic background increases cancer risk in individuals with Lynch syndrome; however, not all carriers develop cancer. Various lifestyle factors can influence Lynch syndrome cancer risk, and lifestyle choices actively shape systemic metabolism, with circulating metabolites potentially serving as the mechanical link between lifestyle and cancer risk. This study aims to characterize the circulating metabolome of Lynch syndrome carriers, shedding light on the energy metabolism status in this cancer predisposition syndrome.This study consists of a three-group cross-sectional analysis to compare the circulating metabolome of cancer-free Lynch syndrome carriers, sporadic colorectal cancer (CRC) patients, and healthy non-carrier controls. We detected elevated levels of circulating cholesterol, lipids, and lipoproteins in LS carriers. Furthermore, we unveiled that Lynch syndrome carriers and CRC patients displayed similar alterations compared to healthy non-carriers in circulating amino acid and ketone body profiles. Overall, cancer-free Lynch syndrome carriers showed a unique circulating metabolome landscape.This study provides valuable insights into the systemic metabolic landscape of Lynch syndrome individuals. The findings hint at shared metabolic patterns between cancer-free Lynch syndrome carriers and CRC patients.Peer reviewe

    Menopause modulates the circulating metabolome : evidence from a prospective cohort study

    No full text
    Aims We studied the changes in the circulating metabolome and their relation to the menopausal hormonal shift in 17β-oestradiol and follicle-stimulating hormone levels among women transitioning from perimenopause to early postmenopause. Methods and results We analysed longitudinal data from 218 Finnish women, 35 of whom started menopausal hormone therapy during the study. The menopausal transition was monitored with menstrual diaries and serum hormone measurements. The median follow-up was 14 months (interquartile range: 8–20). Serum metabolites were quantified with targeted nuclear magnetic resonance metabolomics. The model results were adjusted for age, follow-up duration, education, lifestyle, and multiple comparisons. Menopause was associated with 85 metabolite measures. The concentration of apoB (0.17 standard deviation [SD], 99.5% confidence interval [CI] 0.03–0.31), very-low-density lipoprotein triglycerides (0.25 SD, CI 0.05–0.45) and particles (0.21 SD, CI 0.05–0.36), low-density lipoprotein (LDL) cholesterol (0.17 SD, CI 0.01–0.34) and particles (0.17 SD, CI 0.03–0.31), high-density lipoprotein (HDL) triglycerides (0.24 SD, CI 0.02–0.46), glycerol (0.32 SD, CI 0.07–0.58) and leucine increased (0.25 SD, CI 0.02–0.49). Citrate (−0.36 SD, CI −0.57 to −0.14) and 3-hydroxybutyrate concentrations decreased (−0.46 SD, CI −0.75 to −0.17). Most metabolite changes were associated with the menopausal hormonal shift. This explained 11% and 9% of the LDL cholesterol and particle concentration increase, respectively. Menopausal hormone therapy was associated with increased medium-to-large HDL particle count and decreased small-to-medium LDL particle and glycine concentration. Conclusions Menopause is associated with proatherogenic circulating metabolome alterations. Female sex hormones levels are connected to the alterations, highlighting their impact on women’s cardiovascular health.peerReviewe

    Menopausal symptoms and cardiometabolic risk factors in middle-aged women : A cross-sectional and longitudinal study with 4-year follow-up

    No full text
    Objective To study associations of menopausal symptoms with cardiometabolic risk factors. Study design A cross-sectional and longitudinal study of a representative population sample of 1393 women aged 47–55 years with a sub-sample of 298 followed for four years. The numbers of vasomotor, psychological, somatic or pain, and urogenital menopausal symptoms were ascertained at baseline through self-report. Their associations with cardiometabolic risk factors were studied using linear regression and linear mixed-effect models. Models were adjusted for age, menopausal status, body mass index, the use of hormonal preparations, education, smoking, and alcohol consumption. Main outcome measures Cardiometabolic risk factors included total cholesterol, low-density and high-density lipoprotein cholesterol, blood pressure, glucose, triglycerides, total and android fat mass, and physical activity. Results All cholesterol and fat mass measures had modest positive associations with menopausal symptoms. The number of vasomotor symptoms, in particular, was associated with total cholesterol (B = 0.13 mmol/l, 95 % CI [0.07, 0.20]; 0.15 mmol/l [0.02, 0.28]) and low-density lipoprotein cholesterol (0.08 mmol/l [0.03, 0.14]; 0.12 mmol/l [0.01, 0.09]) in cross-sectional and longitudinal analyses, respectively. However, these associations disappeared after adjusting for confounders. The number of symptoms was not associated with blood pressure, glucose, triglycerides, and physical activity. Menopausal symptoms at baseline did not predict the changes in the risk factors during the follow-up. Conclusions Menopausal symptoms may not be independently associated with cardiometabolic risk, and they do not seem to predict the changes in risk factors during the menopausal transition.peerReviewe

    Role of Menopausal Transition and Physical Activity in Loss of Lean and Muscle Mass : A Follow-Up Study in Middle-Aged Finnish Women

    No full text
    In midlife, women experience hormonal changes due to menopausal transition. A decrease especially in estradiol has been hypothesized to cause loss of muscle mass. This study investigated the effect of menopausal transition on changes in lean and muscle mass, from the total body to the muscle fiber level, among 47–55-year-old women. Data were used from the Estrogenic Regulation of Muscle Apoptosis (ERMA) study, where 234 women were followed from perimenopause to early postmenopause. Hormone levels (estradiol and follicle stimulating hormone), total and regional body composition (dual-energy X-ray absorptiometry (DXA) and computed tomography (CT) scans), physical activity level (self-reported and accelerometer-measured) and muscle fiber properties (muscle biopsy) were assessed at baseline and at early postmenopause. Significant decreases were seen in lean body mass (LBM), lean body mass index (LBMI), appendicular lean mass (ALM), appendicular lean mass index (ALMI), leg lean mass and thigh muscle cross-sectional area (CSA). Menopausal status was a significant predictor for all tested muscle mass variables, while physical activity was an additional significant contributor for LBM, ALM, ALMI, leg lean mass and relative muscle CSA. Menopausal transition was associated with loss of muscle mass at multiple anatomical levels, while physical activity was beneficial for the maintenance of skeletal muscle mass.peerReviewe

    Extracellular vesicles and high‐density lipoproteins : Exercise and oestrogen‐responsive small RNA carriers

    No full text
    Decreased systemic oestrogen levels (i.e., menopause) affect metabolic health. However, the detailed mechanisms underlying this process remain unclear. Both oestrogens and exercise have been shown to improve metabolic health, which may be partly mediated by circulating microRNA (c-miR) signalling. In recent years, extracellular vesicles (EV) have increased interest in the field of tissue crosstalk. However, in many studies on EV-carried miRs, the co-isolation of high-density lipoprotein (HDL) particles with EVs has not been considered, potentially affecting the results. Here, we demonstrate that EV and HDL particles have distinct small RNA (sRNA) content, including both host and nonhost sRNAs. Exercise caused an acute increase in relative miR abundancy in EVs, whereas in HDL particles, it caused an increase in transfer RNA-derived sRNA. Furthermore, we demonstrate that oestrogen-based hormonal therapy (HT) allows the acute exercise-induced miR-response to occur in both EV and HDL particles in postmenopausal women, while the response was absent in nonusers.peerReviewe

    Associations of resting and peak fat oxidation with sex hormone profile and blood glucose control in middle-aged women

    No full text
    Background and Aims Menopause may reduce fat oxidation. We investigated whether sex hormone profile explains resting fat oxidation (RFO) or peak fat oxidation (PFO) during incremental cycling in middle-aged women. Secondarily, we studied associations of RFO and PFO with glucose regulation. Method and Results We measured RFO and PFO of 42 women (age 52–58 years) with indirect calorimetry. Seven participants were pre- or perimenopausal, 26 were postmenopausal, and nine were postmenopausal hormone therapy users. Serum estradiol (E2), follicle-stimulating hormone, progesterone, and testosterone levels were quantified with immunoassays. Insulin sensitivity (Matsuda index) and glucose tolerance (area under the curve) were determined by glucose tolerance testing. Body composition was assessed with dual-energy X-ray absorptiometry; physical activity with self-report and accelerometry; and diet, with food diaries. Menopausal status or sex hormone levels were not associated with the fat oxidation outcomes. RFO determinants were fat mass (β = 0.44, P = 0.006) and preceding energy intake (β = −0.41, P = 0.019). Cardiorespiratory fitness (β = 0.59, P = 0.002), lean mass (β = 0.49, P = 0.002) and physical activity (self-reported β = 0.37, P = 0.020; accelerometer-measured β = 0.35, P = 0.024) explained PFO. RFO and PFO were not related to insulin sensitivity. Higher RFO was associated with poorer glucose tolerance (β = 0.52, P = 0.002). Conclusion Among studied middle-aged women, sex hormone profile did not explain RFO or PFO, and higher fat oxidation capacity did not indicate better glucose control.peerReviewe
    corecore